Predictive Data Analytics for Electricity Fraud Detection Using Tuned CNN Ensembler in Smart Grid

نویسندگان

چکیده

In the smart grid (SG), user consumption data are increasing very rapidly. Some users consume electricity legally, while others steal it. Electricity theft causes significant damage to power grids, affects supply efficiency, and reduces utility revenues. This study helps utilities reduce problems of theft, inefficient monitoring, abnormal in grids. To this end, an dataset from state corporation China (SGCC) is employed develops a novel model, mixture convolutional neural network gated recurrent unit (CNN-GRU), for automatic detection. Moreover, hyperparameters proposed model tuned using meta-heuristic method, cuckoo search (CS) algorithm. The class imbalance problem solved synthetic minority oversampling technique (SMOTE). clean trained then tested with classification. Extensive simulations performed based on real energy data. simulated results show that detection (CNN-GRU-CS) classification better than other approaches terms effectiveness accuracy by 10% average. calculated method 92% precision 94%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smart Grid Data Analytics for Electric Utilities

Author: Andre Szykier CEO/CTO GridPlex Networks LLC Copyright © 2010 P ag e1 Demand Response and Grid Management are power utility initiatives driven by Federal and State stimulus programs to make the electric grid more reliable, secure and intelligent. The first step in making a grid “smart” is by replacing existing end user power utility meters with smart meters that support bi-directional co...

متن کامل

Efficient Incremental Smart Grid Data Analytics

Analytical computations over energy data are gaining popularity thanks to the growing adoption of smart electricity meters. Computations in this context range from seemingly straightforward tasks such as calculating monthly bills based on time-of-use pricing, to elaborate model building for predictions and recommendations in an effort to reduce peak demand. While research in this promising area...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Predictive Analytics for electricity prices using Feed-INS from renewables

Since the liberalization of European electricity markets, stakeholders can actively participate in the trading of electricity. Successful participation in such markets requires an accurate forecast of future electricity prices. However, as large volumes of energy from renewable sources are fed into the system, electricity prices are highly volatile. While recent approaches put a strong focus on...

متن کامل

Smart grid data analytics for digital protective relay event recordings

Information systems and intelligent smart grid data analytics will have a critical role in managing the massive amount of data becoming available in power system substations. Digital protective relays are multi-functional intelligent electronic devices based on microprocessors, which are being installed in substations throughout the power grid. New digital relays are replacing old-fashioned ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forecasting

سال: 2022

ISSN: ['2571-9394']

DOI: https://doi.org/10.3390/forecast4040051